
Temporal and Functional Analysis
UNS International Master1 Lecture

Frédéric Mallet

Robert de Simone

Model-based design

Å Designing products always more complex

Ą Needs for better design methods

ï Thorough requirement capture (documentation)

ï Precise specifications

ï Models and Prototypes

Ą Early simulation and evaluation (by analysis)

.ǳǘΧ

Model-based design

Å Designing products always more complex

Ą Needs for better design methods

ButΧ {ǇŜŎƛŦƛŎŀǘƛƻƴ ƳƻŘŜƭǎ ŀǊŜ ǳǎǳŀƭƭȅ ǘƘŜƴ ŘƛǎŎŀǊŘŜŘ ŀƴŘ
manually re-encoded

ï Match issues όǘǿƻ ǘŜŀƳǎΣ ŜŀŎƘ άƻǿƴǎ ǘƘŜ ǘǊǳǘƘέύ

ï ²ƘŜƴŜǾŜǊ ŎƻŘŜ ǇǊƻŘǳŎŜŘΣ ƳƻǊŜ ŀƴ άŀƴƛƳŀǘŜŘέ ƳƻŘŜƭ ǘƘŀƴ
really efficient

Ą Why not true formal Models of Computations
 at that stage ?

Compilation(naive)

Application

Architecture

compiler

Compilation(more realistic)

Å Some compiling stages may require information on architectural features

Å Available already at compiler design time; more or less explicit

Å Often called « Virtual Platform model »

Application

Architecture

compiler

Archi Model

Allocation
mapping

Archi-aware
Application deployment

Å Adequation between architecture and Application (AAA)
Å Application refinement
Å May require lower-level application description, or simply added info
Å Often called « Platform based approach », model-based or code-based (SystemC)

Our case: multicore (homo/heterogeneous)

Architecture = Network of Processors

What kind(s) of Application models

???

ambition is to provide adequate formal frameworks,
where mapping optimization and analysis can be studied
with mathematical techniques and theories

8

AutoSar

ω3 kinds of busses (LIN,
CAN, FlexRay)

ωMix of Time-Triggered
and Event-Triggered
processing

 same in AADL

ωNeed for metholology
and models for analysis
and design (compilation)

Ą UML ?

Kalray MPPA-256

Intel Single-Chip Cloud computer prototype

Certification

ÅSafety-critical software (and systems) must be qualified before
put in real-use

ÅThis concerns mostly the process (and tools) used in design

ÅFormal methods and verification are becoming more and more
required

International safety standards:

ÅDO-178B for Military and Aerospace Industries

Å IEC 61508 for Heavy Equipment, and Energy

ÅEN 50128 for Rail Transportation

Å ISO 26262 for Road vehicles (automotive)

Å IEC 60880 compliant for Nuclear Energy

V-Cycle (1/2)

http://en.wikipedia.org/wiki/File:V-model.JPG

V-Cycle (2/2)

Χ ǇǊƻǾƛǎƛƻƴǎ

hǳǊ a59 ǾŀǊƛŀƴǘΥ άIέ όƭŀŘŘŜǊύ ŎȅŎƭŜ

Early
specification

Global
requirements

Functional
refinement

Refined
requirements

Architectural
refinement

Local
requirements

Local
provisions

New model
coding Library

component

Χ ǇǊƻǾƛǎƛƻƴǎ

Χ ǇǊƻǾƛǎƛƻƴǎ

Local
requirements

Validation/verification

Å Currently, vertical refinement/composition is only performed manually
(different people/teams)

Å Inside each level, one can hope to establish clear formal relations

ï Property checking (vs requirements, possibly under assumptions)

ï Equivalence/soundness checking (of engineering vs formal model)

Specification
Model

requirements
assumptions

Main objectives
ÅComplex system design (with and beyond software) :

ïSeveral development phases, complex design flow

ïOften models involved Ą model engineering ?

ïIssues with correctness όǘŜƳǇƻǊŀƭΣ ŦǳƴŎǘƛƻƴŀƭΣΧύ ǿƘŜƴ
assembling component parts (with legacy reuse)

ÅQuestions:

ïWhat relations between engineering models and formal
mathematical models
ÅPointwise theories, fruitful under precise semantic restrictions

ÅMathematical analysis, either static or dynamic

ïWhat relations with code and programming languages ?
ÅExecutable specifications with operational semantics, formal scheduling

Models of Computations should be

ÅSound/correct (to the system they are to represent)

ÅHigh-level/sufficiently complete (golden specifications)

ÅEasy to use and understand

 (parsimony of concepts, primitive notions)

ÅMathematically well-founded (Time!)

ÅSupporting useful analysis

 (to be inserted meaningfully in a design flow)

ÅExecutable (run-time, simulation)

ÅNeeds in system structuring as well as dynamics

Course on Formal Methods for Embedded Systems, UNSA EDSTIC Research Master, 2007

Systems: structure and behavior

In general, a system is:

Åconstituted of components, interacting in a
collaborative or hierarchical fashion (structure)

Åevolving, as a result of the composed functional of its
components (behavior)

 a system changes state through time; time is counted in number of
actions/operations

ÅIn highly dynamic systems the division is blurred, as
structure is transformed by behaviors; rarely the case
in embedded systems (never in our case)

See UML and elsewhere, models divided between structural and
behavioral ones

System modeling
Individual components

Å State-based/state diagrams
ï Hierarchical finite-state machines

(FSM)
ï Labels cover actions and

communication events
ï Synchronous extensions widely used

in switching theory (Mealy/Moore)
ï Communicating sequential processes

(CSP/CCS, process algebra)
ï Timed/hybrid extensions

Å Activity-based/activity diagrams
ï Data-Flow Process networks (DF PN)
ï Streaming/pipelined computations
ï Many variants; used for scheduling

and mapping purposes
ï Formally close to components, but

flow are oriented and dynamic
ï Timed extensions

Component assembly platform

Å Component/block diagrams
ï Black box containers, showing

ports for interface on surface
(meant to contain individual
components or subsystems)

ï Indicate connectivity and
topology of interactions

Static structure

Most often the case for System-Level Model-Driven Engineering.

Strong assumption:

Å It defines a subclass of systems being modeled
ÅNo recursive dynamic method invocation / thread creation
Å Instead, (static) concurrency from interacting components
ÅSoftware somehow similar to hardware or physical (discretized)

environment: reactive (Cyber-Physical System design)
ÅAfter system elaboration, only data transfers and control mode

changes

interconnect

Structure: components/blocks + ports

Å Ports for input/output interfaces (data values, but also events such as method
invocation ?)

Å Renamings and links for instantiation (actual instead of formal parameters)

Sender receiver

Forward_channel

Backward_channel

System dynamics

Condition/Action

State

Next_State

Control part:
 program counters, current configuration

Data part:
 memory values

Control part and Data part updated

Guard/Condition part:
 required to execute the action (control)
 possibly different branchings

Effect/Action:
 instructs operations on the memory

I O

Input/Output
interface interactions

external reads/writes

Then (dynamic) structuring/programming operators used to combine instructions
(sequence, if-then-ŜƭǎŜΣ ƭƻƻǇǎΣΧΣ concurrency/parallelism?)

System dynamics

Condition/Action

State

Next_State

I O

Concurrency/parallelism:
Å Actions may consumes and

produces several data from
several states/places

Å States may contain several data
at once (multiple instances)

Å Action execution thus enforces
some amount of synchronization

Å Data availability may enforce
mutual exclusion

Modeling styles for concurrency
ÅGeneral digraph case: Petri Nets
ïFocuses on computation ordering, not data values

ïStates Ą Places ; Actions Ą Transitions

ïPlaces and Transitions may have several sources and targets
(concurrency)

ïData abstracted as tokens (may be several in same place)

ÅRestricted state connections : Data-Flow Process Networks
ïStates Ą Channels, Actions Ą Computation Nodes

ïA channel has only one source and one target (unlike Actions)

ÅRestricted action/activity connections: Automata
ïAn Action has only one source and one target (unlike States)

ïOther means to include concurrency (automata networks)

Ą Process algebras: CCS, CSP (Communicating Sequential Processes)

ÅIn all cases, hierarchical design is an issue

Petri Nets (general principles)

Places/states represent resources (such as data) as tokens

Transitions represent computations
ïPlaces and transitions are formally considered as in parallel

ïA transition is executed (fired) by consuming one token in each of its input
places, and producing one in each output one.

ïSeveral transitions may conflict for the same token (in same place)

ïDistinct initial markings may cause very different behaviors

ïShared tokens used to model semaphore and mutual exclusion

ïBecause of arithmetics on token numbers, high expressivity (but not
Turing-expressive)

Functional correctness

ïA transition called live if infinitely often fireable (decidable, very complex)

ïA place is called safe (k-safe) if token number bounded (by k) (decidable)

Å Issues with Petri Net composition (merge transitions, places?)

Hierarchical Automata and State{*}Charts: principles

Every action has only one incoming (and outgoing) state

Every (local) state contains at most one data/token

ÅFlat: Communicating Sequential Processes

ÅHierarchical: OR/AND states
ïOR states: distinct successive control states of a single automaton

ïAND: parallel sub-automata in a macro-state (modes)

ÅGlobal states usually sets or vectors of local states

Hierarchical Automata and State{*}Charts: variants

according to labels (used for synchronisation)

ÅLOTOS: common action rendez-vous

ÅCCS, CSP: send/receive rendez-vous

ÅMealy/Moore machines: synchronous systems, several
simultaneous signals/events/behaviors in a single transition,
and logical dependence inside the transition (reaction)
ïStates sets of registers, Input (Output) set of signals

ïNext-state and output functions as boolean formulae on input and
current states

FSMs with data

Textual syntax: guarded Command

prev/ from

<origin_control_state_(predicate)>

provided
<conditional_guard_predicate>

(on data values and/or input events)

then
<action >
 (assignment, computation or event production)

next/to
<target_control_state_(predicate)>

Coin?(50cents)

Coin?(50cents)

Coin?(1euros)

Left_button? /deliver(coffee) Right_button? /deliver(cappucino)

/Change!(exp)

Proposition de projet Aoste, CP Sophia 7 juillet 2003

SyncCharts/Esterel

UML synchronous State Machines ?
Comportements sémantiquement fondés

Questions:
ωcompilation efficace
ωŜȄǘŜƴǎƛƻƴ Ł ŘΩŀǳǘǊŜǎ ǘȅǇŜǎ ŘŜ ŘƛŀƎǊŀƳƳŜǎ
(SIBs synchronous sequence diagrams?)

ωLiens avec data-flow: State
diagrams pour SCICOS ?

wA

A

wD

D

WaitAandD

ADWR

done

/ W

dA dD

macrostate

(strong) abortion

transition

Final State

Normal

termination

transition

Parallel

composition

Initial pseudo

transition

R

ADW

Modéliser, analyser, optimiser, compiler...

Mathworks Stateflow

