Temporal and Functional Analysis

UNS International Master1 Lecture 4

Frédéric Mallet Robert de Simone

temporal logics

Temporal logics

- Classical logic + modalities (future mostly)
- Properties true « in certain states » or « for certain runs/ paths »
- linear or tree-like branching time vision
- Property classes (not exhaustive but very frequent):
 - safety/sûreté: « nothing bad happens »
 - liveness/inevitabilité:« eventually something good occurs» (after a finite, but unknown/unbounded period); shows progress out of livelock loops.
 - fairness/équité ? liveness assumption
 - Weak: provided almost always P
 - Strong: provided unfinitely always P

```
Modalities: width: E: possibly (in one future)
```

A: absolutely (for all future)

Examples

depth X: next

F: eventually

G: forever

U: until (binary op)

No overflow (safety)

Eventually I will have to start while not ready (reachability)

A request will always be acknowledged afterwards

$$AG(Req \Rightarrow AFAck)$$

Each request can be acknowledged afterwards

$$AG(Req \Rightarrow EF Ack)$$

A data written is read before the next write (no lost)

AG (Write
$$\Rightarrow$$
 (\neg Overwrite U Read))

- Infinitely often AG(AF Event)
- System is resettable («attractivity »)

CTL*: syntax

- State and Path formulae (with corresponding interpretation)
 - State formulae (f,g, ...):
 - atomic predicates (abstraction of data or control predicates)
 - $\neg f \text{ (not f)}, f \land g \text{ (f and g)}, f \lor g \text{ (f or g)}$
 - E(xists) p, A(II) p (width), with p a path formula
 - Path formulae (p,q, ...) :
 - include state formulae f,g,...
 - ¬p, p∧q, p∨q
 - X p (next), p U q (until)
 - Fp (eventually), Gp (always) (depth)

CTL*: semantics

basicpred labels S M,s |= basicpred iff M,s $\mid = \neg f$ not (M,s | = f)iff $M,s = f \wedge g$ M,s = f and M,s = giff $M,s \mid = E p$ $\exists \pi$ path from S, $M,\pi \mid = p$ iff $M,s \mid = A p$ $\forall \pi$ path from S, $M,\pi \mid = p$ iff $M,\pi \mid = f$ M,S = f, where S initial state of π iff $M,\pi \mid = X p$ $M_{\tau}\pi$ = p (π is π stripped of its first step) iff $\exists i, M, \pi \mid_i \mid = p \quad (\pi \mid_i \text{ is } \pi \text{ without i first steps})$ $M,\pi \mid = Fp$ iff $M,\pi \mid = G p$ $M,\pi \mid = \neg F \neg p$ iff $\exists i, M, \pi \mid_i | = q$, et $\forall j < i, M, \pi \mid_i | = p$ $M,\pi \mid = p \cup q$ iff

Linear-time vs branching-time temporal logics

- CTL (computation-tree logics)
 - Only state-formulae: AG, AF, AX, A(fUg),EG, EF, EX, E(fUg)
- LTL (linear-time logics)
 - Only path formulae (with: basicpred valued on path as at initial state)
 - then M |= p iff $\forall \pi$ path in M, M, π |= p
- CTL: polynomal complexity, direct application on model, by state state/predicate transformation
- LTL: exponential on the formula size only, observers as Büchi

Expressivity: CTL vs LTL

No way in LTL to speak of branching stages

$$(EX Q \wedge EX \neg Q),$$

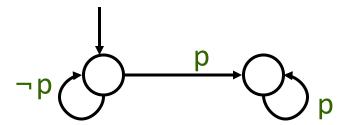
(possibly next Q and possibly next not Q)

 No way in CTL to impose that various subformulas all deal with « a single » future path

GF p

(infinitely often p),

while the «CTL version» AG(EF p) is satisfied by:



Model-checking of temporal properties

(on finite models)

Model-checking

Check formulae on given models!

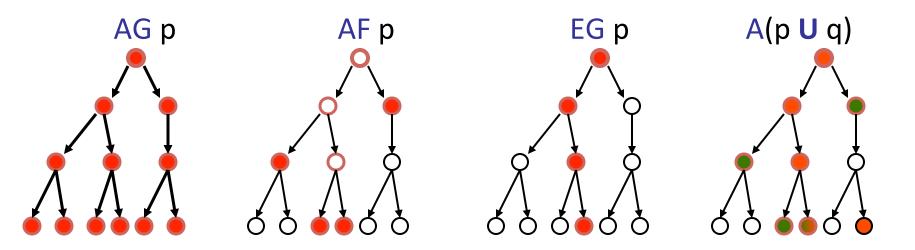
(as opposed to: verify whether the formula can accept a model (satisfiability)

Our models are finite state machines

- issues are:
 - generation and search of reachable states and runs)
 - ➤ Fixpoint algorithms finite state → convergence (Tarski th.))

Computation Tree Logic

- Intuitive algorithm presentation (sketch)
- modalities: AX p , EX p, A(p U q) , E(p U q), ...



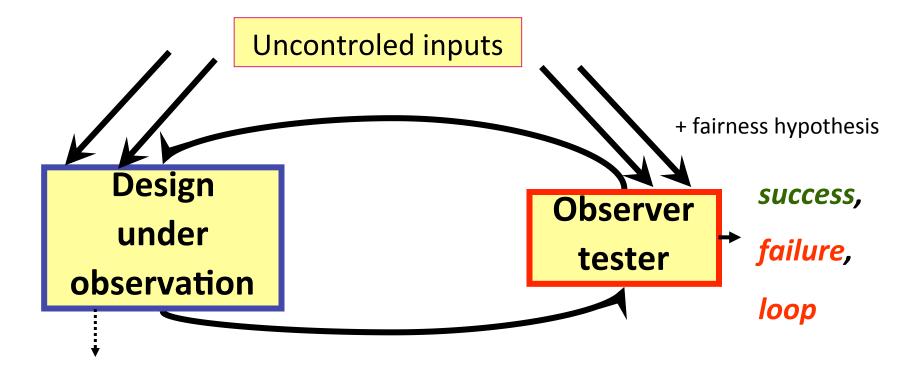
- : p true
- : q true
- \circ : Op(p,q) true

CTL model-checking: formal algorithm definition

Smallest or largest fixpoints:

- AF $p = \mu Z$. $p \vee AX Z$
- EF $p = \mu Z$. $p \vee EX Z$
- AG p = vZ. $p \wedge AX Z$
- EG p = vZ. p \wedge EX Z
- A[p U q] = μ Z. q \vee (p \wedge AX Z)
- $E[p U q] = \mu Z. q \vee (p \wedge EX Z)$

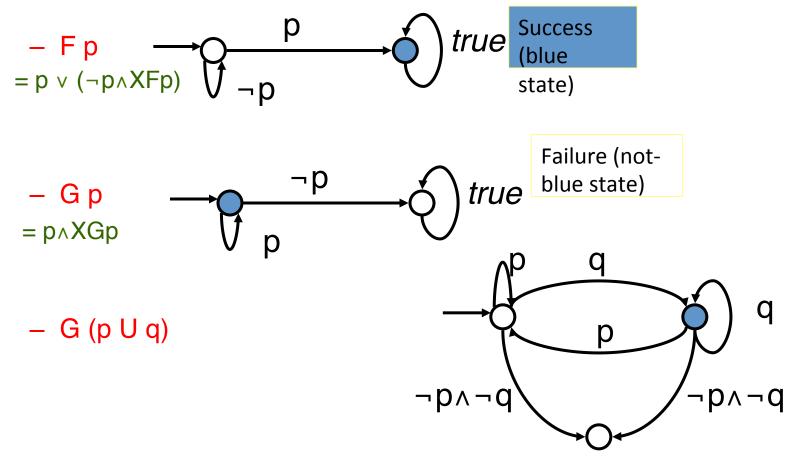
LTL Observers



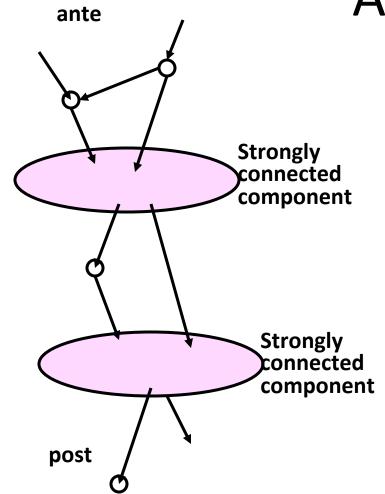
Brings down
safety to (un)reachability, and
liveness to existence (or not) of «non-terminating» fair loops
in the composed system

LTL model-checking

- One unfold definitions to create new states (states are named after residual subformulae)
- A run is successful if it crosses infinitely often a success state (painted blue)



Approximating loops



First (smallest) fixpoint

(remember X is neXt state):

 μ Z. Init $\cup X(Z)$

provides the reachable « playground » zone R

Second (largest) fixpoint:

 $\nu Y. R \cap X(Y)$

computes SCCs, with their outgoing states

But this is empty iff SCCs are!

Symbolic state space representation

Reachable state space construction

- Global state = local states vector
- Concurrency: combinatorial explosion
- In principle, exhaustive depth-first or breadth-first search (with visited states recollection)
- Optimizations
 - Symbolic state space representation (SMV)
 - Compositional methods (SMV)
 - Conservative approximations
 - On-the-fly and partial order techniques (SPIN)
 - Partitioned transitions:
 - asynchronous processes : local actions
 - synchronous processus : local registers (SMV)

Binary Decision Diagrams

- Discrete types (boolean, bounded integers → bitsets (encoding states, transitions)
- Sets of ...
 - → bitset predicates on boolean variables → boolean formulae
 - $\rightarrow BDDs$
- Canonical graphs (unique normal form)

Generalized XOR $(x x \oplus y \oplus z)$

