Temporal and Functional Analysis
UNS International Masterl Lecture 4

Frédéric Mallet
Robert de Simone

temporal logics

Temporal logics

Classical logic + modalities (future mostly)

Properties true « in certain states » or « for certain runs/
paths »

linear or tree-like branching time vision

Property classes (not exhaustive but very frequent):
— safety/slreté: « nothing bad happens »

— liveness/inevitabilité:« eventually something good
occurs» (after a finite, but unknown/unbounded period); shows
progress out of livelock loops.

— fairness/équité ? liveness assumption

* Weak: provided almost always P
e Strong: provided unfinitely always P

Modalities: width: E: possibly (in one future)
A: absolutely (for all future)

depth X: next EXBmp'ES

F: eventually
G: forever
U: until (binary op)

No overflow (safety)
AG(x < maxint)
Eventually | will have to start while not ready (reachability)
EF(Start? A —=Ready)
A request will always be acknowledged afterwards
AG(Req = AF Ack)
Each request can be acknowledged afterwards
AG(Req = EF Ack)
A data written is read before the next write (no lost)
AG (Write = (—Overwrite U Read))
Infinitely often AG(AF Event)
System is resettable («attractivity »)
AG(EF restart_state)

CTL* : syntax

e State and Path formulae (with corresponding interpretation)

— State formulae (fg, ...):
* atomic predicates (abstraction of data or control predicates)
e =f(notf), fAg(fandg), fvg (forg)
* E(xists) p, A(ll) p (width), with p a path formula

— Path formulae (p,q, ...) :
* include state formulae f,g,...

* ~p, PAQ, PVQ
* Xp(next), pUq (until)
* Fp (eventually), G p (always) (depth)

M,s
M,s
M,s
M,s

M,
M,

M,

M,

basicpred

- f

CTL* : semantics

iff

basicpred labels s

not (M,s |=f)

M,s |=f and M,s |=¢g

3 7t path from's, M, |=p

V 7t path froms, M, |=p

M,s |=f, where S initial state of 7T

|V|,J'E|1 |=p (J'l:|1isJ'Estrippedofitsﬁrststep)
di, M,t|. |=p (|, is 7T without i first steps)
Mt |==F-p

i, M,xt|,|=q,et Vj<i, M| |=p

Linear-time vs branching-time temporal
logics

CTL (computation-tree logics)
— Only state-formulae: AG, AF, AX, A(fUg),
EG, EF, EX, E(fUg)
LTL (linear-time logics)
— Only path formulae (with: basicpred valued on path as at initial state)
— then M |=piff V t pathin M, M,z |=p

CTL : polynomal complexity, direct application on model, by state
state/predicate transformation

LTL : exponential on the formula size only, observers as Biichi
automata

Expressivity: CTL vs LTL

* No way in LTL to speak of branching stages
(EX Q A EX _'Q))
(possibly next Q and possibly next not Q)

* No way in CTL to impose that various subformulas
all deal with « a single » future path

GFp
(infinitely often p),

while the «CTL version» AG(EF p) is satisfied by:

O,

Model-checking of

temporal properties
(on finite models)

Model-checking

* Check formulae on given models |

(as opposed to: verify whether the formula can accept a model (satisfiability)

— Our models are finite state machines

— Issues are:
e generation and search of reachable states and runs)
» Fixpoint algorithms finite state — convergence (Tarski th.))

Computation Tree Logic
* |ntuitive algorithm presentation (sketch)
 modalities: AXp, EXp,A(pUq), E(pUq), ...

bl i)

O: 0p(p,q) true

CTL model-checking: formal
algorithm definition

* Smallest or largest fixpoints:

— AFp=uZ pvAXZ
— EFp=uZ pvEXZ
— AGp=vZ.pArAXZ
- EGp=vZ.pArEXZ
— ApUq]=uZ.qv (p r AXZ)
— E[pUq]l=uZ.qv (pAEXZ

LTL Observers

Uncontroled inputs

+ fairness hypothesis

Design
4 Observer | °>UYccess
under .
tester fallure,

observation
. loop

v

Brings down

safety to (un)reachability, and

liveness to existence (or not) of «non-terminating» fair loops
in the composed system

LTL model-checking

One unfold definitions to create new states (states are named after
residual subformulae)

A run is successful if it crosses infinitely often a success state (painted
blue)

P—
Fp) -p

=p v (-paX state)

Failure (not-

~ Gp :® frue blue state)
= pAXGp ! , p

- G(pUQ)

ante Approximating loops

—7 Strongly First (smallest) fixpoint
onnected _
(>component (remember X is neXt state):
uZ. Init U X(2Z)
provides the reachable « playground » zone R
Strongly
onnected
F component Second (largest) fixpoint:
post \ vY. R N X(Y)

computes SCCs, with their outgoing states

But this is empty iff SCCs are !

Symbolic state space
representation

Reachable state space construction

Global state = local states vector
Concurrency: combinatorial explosion

In principle, exhaustive depth-first or breadth-first search
(with visited states recollection)

Optimizations

— Symbolic state space representation (SMV)
— Compositional methods (SMV)

— Conservative approximations

— On-the-fly and partial order techniques (SPIN)

— Partitioned transitions:
* asynchronous processes : local actions
* synchronous processus : local registers (SMV)

Binary Decision Diagrams

* Discrete types (boolean, bounded integers —
bitsets (encoding states, transitions)

* Sets of ...

— bitset predicates on boolean variables —
boolean formulae

—> BDDs
e Canonical graphs (uniqgue normal form)

Generalized XOR «x @y @ z »

